首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   403篇
  免费   60篇
  国内免费   6篇
  2023年   4篇
  2022年   3篇
  2021年   13篇
  2020年   10篇
  2019年   9篇
  2018年   12篇
  2017年   5篇
  2016年   12篇
  2015年   18篇
  2014年   19篇
  2013年   26篇
  2012年   32篇
  2011年   34篇
  2010年   26篇
  2009年   24篇
  2008年   31篇
  2007年   24篇
  2006年   13篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   8篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1979年   3篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1972年   3篇
  1971年   2篇
  1968年   1篇
排序方式: 共有469条查询结果,搜索用时 828 毫秒
91.

Key message

Extended antipodal life-span.

Abstract

The female gametophyte of most flowering plants forms four cell types after cellularization, namely synergid cell, egg cell, central cell and antipodal cell. Of these, only the antipodal cells have no established functions, and it has been proposed that in many plants including Arabidopsis, the antipodal cells undergo programmed cell death during embryo sac maturation and prior to fertilization. Here, we examined the expression of female gametophyte-specific fluorescent reporters in mature embryo sacs of Arabidopsis, and in developing seeds shortly after fertilization. We observed expression of the fluorescence from the reporter genes in the three antipodal cells in the mature stage embryo sac, and continuing through the early syncytial endosperm stages. These observations suggest that rather than undergoing programmed cell death and degenerating at the mature stage of female gametophyte as previously supposed, the antipodal cells in Arabidopsis persist beyond fertilization, even when the other cell types are no longer present. The results support the concept that the Arabidopsis female gametophyte at maturity should be considered to be composed of seven cells and four cell types, rather than the previously prevailing view of four cells and three cell types.  相似文献   
92.
Insect Barcode Information System called as Insect Barcode Informática (IBIn) is an online database resource developed by the National Bureau of Agriculturally Important Insects, Bangalore. This database provides acquisition, storage, analysis and publication of DNA barcode records of agriculturally important insects, for researchers specifically in India and other countries. It bridges a gap in bioinformatics by integrating molecular, morphological and distribution details of agriculturally important insects. IBIn was developed using PHP/My SQL by using relational database management concept. This database is based on the client– server architecture, where many clients can access data simultaneously. IBIn is freely available on-line and is user-friendly. IBIn allows the registered users to input new information, search and view information related to DNA barcode of agriculturally important insects.This paper provides a current status of insect barcode in India and brief introduction about the database IBIn.

Availability

http://www.nabg-nbaii.res.in/barcode  相似文献   
93.

Background

Alpha-1 antitrypsin is the main inhibitor of neutrophil elastase in the lung. Although it is principally synthesized by hepatocytes, alpha-1 antitrypsin is also secreted by bronchial epithelial cells. Gene mutations can lead to alpha-1 antitrypsin deficiency, with the Z variant being the most clinically relevant due to its propensity to polymerize. The ability of bronchial epithelial cells to produce Z-variant protein and its polymers is unknown.We investigated the expression, accumulation, and secretion of Z-alpha-1 antitrypsin and its polymers in cultures of transfected cells and in cells originating from alpha-1 antitrypsin-deficient patients.

Methods

Experiments using a conformation-specific antibody were carried out on M- and Z-variant–transfected 16HBE cells and on bronchial biopsies and ex vivo bronchial epithelial cells from Z and M homozygous patients. In addition, the effect of an inflammatory stimulus on Z-variant polymer formation, elicited by Oncostatin M, was investigated. Comparisons of groups were performed using t-test or ANOVA. Non-normally distributed data were assessed by Mann–Whitney U test or the Kruskal-Wallis test, where appropriate. A P value of < 0.05 was considered to be significant.

Results

Alpha-1 antitrypsin polymers were found at a higher concentration in the culture medium of ex vivo bronchial epithelial cells from Z-variant homozygotes, compared with M-variant homozygotes (P < 0.01), and detected in the bronchial epithelial cells and submucosa of patient biopsies. Oncostatin M significantly increased the expression of alpha-1 antitrypsin mRNA and protein (P < 0.05), and the presence of Z-variant polymers in ex vivo cells (P < 0.01).

Conclusions

Polymers of Z-alpha-1 antitrypsin form in bronchial epithelial cells, suggesting that these cells may be involved in the pathogenesis of lung emphysema and in bronchial epithelial cell dysfunction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0112-3) contains supplementary material, which is available to authorized users.  相似文献   
94.
95.
Prion diseases are infectious and inevitably fatal neurodegenerative diseases characterized by prion replication, widespread protein aggregation and spongiform degeneration of major brain regions controlling motor function. Oxidative stress has been implicated in prion-related neuronal degeneration, but the molecular mechanisms underlying prion-induced oxidative damage are not well understood. In this study, we evaluated the role of oxidative stress-sensitive, pro-apoptotic protein kinase Cδ (PKCδ) in prion-induced neuronal cell death using cerebellar organotypic slice cultures (COSC) and mouse models of prion diseases. We found a significant upregulation of PKCδ in RML scrapie-infected COSC, as evidenced by increased levels of both PKCδ protein and its mRNA. We also found an enhanced regulatory phosphorylation of PKCδ at its two regulatory sites, Thr505 in the activation loop and Tyr311 at the caspase-3 cleavage site. The prion infection also induced proteolytic activation of PKCδ in our COSC model. Immunohistochemical analysis of scrapie-infected COSC revealed loss of PKCδ positive Purkinje cells and enhanced astrocyte proliferation. Further examination of PKCδ signaling in the RML scrapie adopted in vivo mouse model showed increased proteolytic cleavage and Tyr 311 phosphorylation of the kinase. Notably, we observed a delayed onset of scrapie-induced motor symptoms in PKCδ knockout (PKCδ−/−) mice as compared with wild-type (PKCδ+/+) mice, further substantiating the role of PKCδ in prion disease. Collectively, these data suggest that PKCδ signaling likely plays a role in the neurodegenerative processes associated with prion diseases.  相似文献   
96.
A 60 nt long RNA termed IRNA, isolated from the yeast Saccharomyces cerevesiae, was previously shown to selectively block internal ribosome entry site (IRES)-mediated translation without interfering with cap-dependent translation of cellular mRNAs both in vivo and in vitro. IRNA specifically bound cellular proteins believed to be important for IRES-mediated translation. We demonstrate here that a complementary copy of IRNA (cIRNA) is also active in blocking IRES-mediated translation and that it binds many of the same cellular proteins that IRNA does. We have probed the secondary structure of both IRNA and cIRNA using single-strand- and double-strand-specific nucleases as well as using oligonucleotide hybridization followed by RNase H digestion. Both IRNA and cIRNA share secondary structural homology, although distinct differences do exist between the two structures. Mutational analysis of IRNA shows that sequences that form both the main stem and one loop are critical for its translation inhibitory activity. Maintenance of the established secondary structure appears to be required for both IRNA's ability to bind cellular trans -acting proteins believed to be required for IRES-mediated translation and its ability to block IRES-mediated translation.  相似文献   
97.
CL316243 is a highly selective and potent beta3-adrenergic receptor agonist, and has been shown in rodent models to be an effective agent for treating obesity and Type II diabetes. To improve the oral absorption and pharmacokinetic profiles of CL316243, a number of prodrugs have been synthesized and evaluated. Several ester-type prodrugs show significant improvements in oral bioavailability in both rodent and primate models.  相似文献   
98.
Human and Simian Immunodeficiency virus (HIV-1, HIV-2, and SIV) encode an accessory protein, Nef, which is a pathogenesis and virulence factor. Nef is a multivalent adapter that dysregulates the trafficking of many immune cell receptors, including chemokine receptors (CKRs). Physiological endocytic itinerary of agonist occupied CXCR4 involves ubiquitinylation of the phosphorylated receptor at three critical lysine residues and dynamin-dependent trafficking through the ESCRT pathway into lysosomes for degradation. Likewise, Nef induced CXCR4 degradation was critically dependent on the three lysines in the C-terminal -SSLKILSKGK- motif. Nef directly recruits the HECT domain E3 ligases AIP4 or NEDD4 to CXCR4 in the resting state. This mechanism was confirmed by ternary interactions of Nef, CXCR4 and AIP4 or NEDD4; by reversal of Nef effect by expression of catalytically inactive AIP4-C830A mutant; and siRNA knockdown of AIP4, NEDD4 or some ESCRT-0 adapters. However, ubiquitinylation dependent lysosomal degradation was not the only mechanism by which Nef downregulated CKRs. Agonist and Nef mediated CXCR2 (and CXCR1) degradation was ubiquitinylation independent. Nef also profoundly downregulated the naturally truncated CXCR4 associated with WHIM syndrome and engineered variants of CXCR4 that resist CXCL12 induced internalization via an ubiquitinylation independent mechanism.  相似文献   
99.
Seven human immunodeficiency virus gag polypeptides were identified in the purified virus and in infected CD4+ lymphocytes by peptide mapping and limited amino acid sequencing of immune-purified proteins. Two gag polyproteins of 55,000 (p55) and 41,000 (p41) daltons were rapidly labeled and readily processed into the major internal gag proteins that were aligned within the gag open reading frame (ORF) as NH2-p16 (MA)-p24 (CA)-p9 (NC)-p7-COOH. The myristoylated p16 (matrix, MA) protein was processed from the myristoylated p55 gag precursor protein. The immunoreactivity of the p16 (MA) protein with region-specific gag antisera and the conservation of the N-terminal myristyl group of the p55 precursor protein in p16 (MA) confirmed its position as the N-terminal-most protein. The p9 (nucleocapsid, NC) protein was localized to residue 378 of the gag ORF, next to the C terminus of the p24/p25 (core antigen, CA) protein. The p9 protein had a repeating Cys residue containing motif which is found in the nucleic acid-binding Cys residue-containing proteins of retroviruses. The p24 (CA) protein, which was localized to residue 133 of the gag ORF, was apparently derived by C-terminal processing of an intermediate polypeptide, p25. Both the mature p24 (CA) and p16 (MA) proteins were phosphorylated at Ser residue(s). We also identified two forms of gag p41 species, one resulting from the C-terminal processing of p55 and the other originating either from N-terminal processing of p55 or from de novo synthesis.  相似文献   
100.
Hydroxyapatite (HA), a bioceramic, is a widely utilized material for bone tissue repair and regeneration because of its excellent properties such as biocompatibility, exceptional mechanical strength, and osteoconductivity. HA can be obtained by both synthetic and natural means. Animal bones are often considered a promising natural resource for the preparation of pure HA for biological and biomedical applications. Cuttlefish bone, also called as cuttlebone, mainly consists of calcium carbonate, and pure HA can be produced by adding phosphoric acid or ammonium hydrogen phosphate to it. Recently, cuttlefish bone-derived HA has shown promising results in terms of bone tissue repair and regeneration. The synthesized cuttlefish bone-derived has shown excellent biocompatibility, cell proliferation, increased alkaline phosphate activity, and efficient biomineralization ability with mesenchymal stem cells and osteoblastic cells. To further improve the biological properties of cuttlefish bone-derived HA, bioglass, polycaprolactone, and polyvinyl alcohol were added to it, which gave better results in terms of cell proliferation and osteogenic differentiation. Cuttlefish bone-derived HA with polymeric substances provides excellent bone formation under in vivo conditions. The studies indicate that cuttlefish bone-derived HA, along with polymeric and, protein materials, will be promising biomaterials in the field of bone tissue regeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号